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Abstract: Modern software systems are becoming increasingly configurable, often relying on Product-Line Engineering
(PLE) to efficiently develop variant-rich systems while ensuring reusability. However, security considerations
in existing PLE research are typically insufficient as security is often (partly) neglected or not integrated
into the overall development process. To address this gap, we developed an additional layer of the PLE
framework: security engineering — positioned between domain engineering and application engineering. Our
results are based on a systematic review of 49 secure PLE frameworks and workflows, synthesizing their
insights and our expertise in compliance with the ISO/IEC 27000 series. By following six processes and 12
activities, our iterative approach ensures that security is systematically embedded in the PLE process. We
particularly highlight the importance of reusable security artifacts, secure business-process modeling, and
standard compliance, aiming to facilitate the transfer of theoretical solutions into secure business practice.

1 INTRODUCTION

Modern software systems are becoming increasingly
configurable, i.e., they are based on a variety of
features which can be disabled, enabled, or com-
bined (Abal et al., 2018). In this context, they often
build on concepts and techniques related to Product-
Line Engineering (PLE) as an established approach
for developing and maintaining configurable software
systems. In particular, PLE supports the creation of
product families with similar but adapted functionali-
ties, optimizing development efficiency (i.e., reusabil-
ity, maintenance) and reducing development time and
costs (Pohl et al., 2005; Apel et al., 2013). This ap-
proach has already shown its benefits in various do-
mains, for example, manufacturing (Iglesias et al.,
2017), healthcare (Gomes et al., 2012), or Enterprise-
Resource-Planning (ERP) (May et al., 2023a).

In recent years, configurable systems have be-
come increasingly complex, involving a wide diver-
sity of data, features, business processes, as well
as associated interactions, configurations, and depen-
dencies (Mellado et al., 2014; May et al., 2023a).
However, due to this complexity, the potential to fall
victim to a cyberattack is constantly increasing (Abal
et al., 2018). More specifically, the more complex
(i.e., configurable) the systems are, the greater the risk

of unexpected vulnerabilities and their exploitation by
cyberattacks due to potential misconfigurations, unin-
tended features interactions, or unknown dependen-
cies. Therefore, increasing variability leads to major
challenges related to IT security (Mesa et al., 2018;
Kenner et al., 2021).

This is why current research already considers
parts of secure PLE, such as feature verification,
or broader PLE workflows, such as requirements-
engineering frameworks (cf. Section 6). However,
recent studies (Kenner et al., 2021; May et al., 2022,
2023b, 2024a) have already identified a lack of (holis-
tic) security considerations in PLE, i.e., security is
typically only referred to as a non-functional require-
ment or quality objective rather than a cross-cutting
concern equally important as other functional require-
ments. This treatment usually leads to an under-
representation of security in the PLE processes and
activities. Although some frameworks already con-
sider security on a somewhat equal level with other
functional requirements and associated features, they
usually only focus on a few parts of the PLE pro-
cess, such as security verification with CyberSPL
by Varela-Vaca et al. (2019). In addition, current so-
lutions often do not comply with security standards,
such as ISO/IEC 27000 (2022), impairing the transfer
of theoretical approaches into business practice. This



finding does not only refer to certain domains, instead
it represents a critical cross-domain gap (e.g., in man-
ufacturing).

To address this gap, we developed an extension
of the PLE framework (Pohl et al., 2005) by ana-
lyzing and synthesizing 49 existing frameworks and
workflows (Nickerson et al., 2013) supporting secure
PLE. In particular, we ensured that the entire exten-
sion complies with the requirements of the ISO/IEC
27000 (2022) series. As a result, we propose an
additional PLE layer between domain engineering
and application engineering, called security engineer-
ing. We argue that the extension is currently domain-
independent, but may be easily adaptable to certain
domains by considering domain-specific standards
and regulations in the problem space (cf. Section 4).
Overall, we contribute the following:

• An overview of current research regarding secu-
rity in the context of PLE frameworks.

• An additional, standard-compliant layer of PLE,
called security engineering, comprising six pro-
cesses and 12 activities.

• An open-access repository including the extrac-
tion sheet to allow study replications.1

With our work, we aim to create a broader under-
standing of how security concerns can be holistically
considered in PLE. Moreover, we believe that security
engineering can support both researchers and prac-
titioners regarding the transfer of theoretical knowl-
edge into business practice, ensuring compliance with
security standards. However, note that the PLE frame-
work including our extension is not yet validated, al-
though it is based on peer-reviewed information in
most parts.

In the remainder of this paper, we organize the
content as follows: First, Section 2 provides an
overview of the relevant background. After that, in
Section 3, we detail our methodology and present a
summary of our development steps. Section 4 intro-
duces the our extension of the PLE framework. In
Section 5, we discuss further implications and address
potential threats to the internal and external validity.
Then, in Section 6, we review related work, and fi-
nally, Section 7 concludes the paper.

2 BACKGROUND

Next, essential background information on PLE and
security management are provided.

1https://doi.org/10.5281/zenodo.14748327

2.1 Product-Line Engineering

PLE is an established methodology for developing
software-product families that share common char-
acteristics and features, built on a shared core archi-
tecture and configured for specific needs (Pohl et al.,
2005; Thüm et al., 2014). Its primary goals are to op-
timize software development by improving efficiency
and reusability, reducing costs, and accelerating de-
velopment (van der Linden et al., 2007). A key as-
pect of PLE is managing software variability to tailor
products to specific requirements. Feature models are
used to represent and configure both static and dy-
namic variability, enabling systematic reuse of soft-
ware artifacts and automated product derivation (Ba-
tory, 2004; Apel et al., 2013). However, PLE intro-
duces complexity, requiring specialized strategies to
verify system correctness. Feature-based, product-
based, and family-based analyses address variability
challenges in different domains (Thüm et al., 2014).
Security requirements, often cross-cutting functional
variability, require holistic strategies that integrate se-
curity into both domain and application engineering
to ensure the quality, reliability, and security of de-
rived products (Horcas et al., 2019; May et al., 2025).

2.2 Security Management

Security management is a business-critical compo-
nent of software systems, requiring a holistic ap-
proach to protect their assets. At its core lies the
CIA triad, encompassing the security goals of con-
fidentiality, integrity, and availability (Samonas and
Coss, 2014). These principles form the foundation
of widely recognized standards such as the ISO/IEC
27000 (2022) guiding organizations in achieving ro-
bust security in practice. IT security focuses on pro-
tecting software systems and their associated assets
from threats, for example, including breaches, unau-
thorized access, or data manipulation (NIST SP 800-
30r1, 2012; ISO/IEC 27000, 2022). Threats are typ-
ically identified by monitoring systems and vulner-
ability databases (NIST SP 800-150, 2016), while
risks are related to their potential impact and like-
lihood (ISO/IEC 27000, 2022). Vulnerabilities, i.e.,
weaknesses exploitable by attacks or system failures,
are key to understanding risks. Effective risk man-
agement integrates security activities across all phases
of the software-development lifecycle to meet secu-
rity requirements and ensure an acceptable level of
risk (NIST SP 800-30r1, 2012).

https://doi.org/10.5281/zenodo.14748327
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Figure 1: Method overview; numbers indicate amount of papers or characteristics (dark circled), i.e., processes and activities.

3 METHOD

In the following section, we describe the method of
our study (i.e., design and conduct).

3.1 Design

The framework extension builds on the methodology
proposed by Nickerson et al. (2013), which offers
guidelines for developing frameworks, making it par-
ticularly well-suited to our context. The method in-
volved three main steps:
Meta-Characteristics. First, meta-characteristics
were defined to capture engineering processes and ac-
tivities concerning IT security and PLE. We focus
exclusively on security engineering as a third per-
spective, complementing domain and application en-
gineering. Security engineering builds on domain
engineering results and provides requirements and
features for application engineering, ensuring equal
consideration of functional and secure development.
We distinguish three perspectives: the problem space
(i.e., domain-specific abstractions such as require-
ments), the solution space (i.e., realization of these
abstractions), and the mapping (i.e., configuration op-
tions to adapt abstractions to specific contexts) (Berg
et al., 2005).
Ending Conditions. Second, ending conditions (Ei)
ensure the methodological process maintains high
quality (Nickerson et al., 2013). Eight conditions
were considered: four objective criteria ensure unique
characteristics (E1), original context is preserved
(E2), no merging in the last iteration (E3), and no ad-
ditions in the last iteration (E4). Four subjective crite-
ria ensure robustness (E5), completeness (E6), adapt-
ability (E7), and explainability (E8).
Characteristics Development. Third, characteris-
tics were developed iteratively using an empirical-to-

conceptual approach (Nickerson et al., 2013), sup-
ported by a systematic literature review (Kitchenham
et al., 2015). We focused on secure PLE frameworks
and workflows rather than specific engineering pro-
cesses. The following search string was formulated:

("secur*") AND ("framework" OR "taxonomy"
OR "engineering" OR "pattern" OR "process"
OR "approach" OR "architecture") AND
("product line")

Inclusion/exclusion criteria limited research to
peer-reviewed work (2005–2024) with at least four
pages, excluding studies not focused on secure PLE
frameworks or workflows. On November 1, 2024, the
second author conducted an automated search across
ACM GUIDE TO COMPUTING LITERATURE (21 ar-
ticles), IEEE XPLORE (100 articles), and SCOPUS
(381 articles), yielding 502 results. After title/abstract
screening, 47 papers remained. Two iterations of for-
ward and backward snowballing added nine more pa-
pers. After full-text review, 49 papers were included
(cf. Figure 1 and Table 1).

The selected works were analyzed using the de-
fined meta-characteristics, and processes and activi-
ties were abstracted and synthesized. The first and
second authors discussed these results, evaluating
them against the ending conditions. All conditions
except E1, E3, E4, E5, and E6 were met. This iter-
ation produced the first extension version, including
14 characteristics (six processes, eight activities).

Subsequent iterations used a conceptual-to-
empirical approach (Nickerson et al., 2013), rely-
ing on the authors’ expertise and the ISO/IEC 27000
(2022) standards. Four activities related to secu-
rity testing were iteratively added, reordered, and re-
named. Each iteration included discussions using an
open-card sorting method and evaluations of ending



condition fulfillment. After three iterations, the final
extension consisted of six processes and 12 activities
(cf. Figure 1 and Figure 2).

4 SECURITY ENGINEERING

To address security concerns throughout the PLE de-
velopment, we present our framework extension: se-
curity engineering (cf. Figure 2). The six identified
processes and 12 activities, classified into the three
key perspectives of problem space, mapping, and so-
lution space are described in detail below.

4.1 Problem Space

The problem space focuses on understanding (i.e., an-
alyzing) and defining the security landscape as well
as the architecture. This perspective is crucial since it
sets the foundation for all subsequent security efforts.
Security Analysis. The security analysis is the first
step in addressing security concerns in product lines.
It involves a detailed examination of the domain to
identify legal requirements, stakeholder expectations,
potential risks, and threats.

One of the activities in this process is the anal-
ysis of domain legal regulations. This involves un-
derstanding the legal and regulatory frameworks that
apply to more general domains, such as the ISO/IEC
27000 (2022) series for information security, or spe-
cific domains, such as the Health Insurance Portabil-
ity and Accountability Act (Fernandez et al., 2015)
in healthcare. Here, it is highly important to identify
relevant guidelines and restrictions to align the over-
all security concept with them, ensuring compliance
with legal obligations.

Another activity in security analysis is the domain
requirements identification, which is similar to the
procedure in the traditional domain engineering (Pohl
et al., 2005; Reinhartz-Berger et al., 2013), however,
focusing on security. This step includes capturing
the specific security needs of stakeholders involved
in the development process of a specific system, such
as requirements linked to assets and features of cyber-
physical systems (Varela-Vaca et al., 2021).

Closely connected to the domain requirements,
domain threats and risks must be systematically iden-
tified and analyzed. This activity involves conduct-
ing preventive risk assessments and threat model-
ing to understand the vulnerabilities present within
the domain and prioritize their mitigation. Here,
established frameworks, such as STRIDE, DREAD,
SQUARE (Achour et al., 2015b), or Magerit (Mel-
lado et al., 2010), provide robust guidelines. Other,

less complex approaches may also be feasible, includ-
ing UML modeling, activity models (Fernandez et al.,
2015), or trade-off analyses (Sánchez et al., 2014).

Due to the increasing integration of third-party
services, such as cloud services, they also play a sig-
nificant role in security analysis. Many software sys-
tems rely on external services for functionality, intro-
ducing potential security vulnerabilities (May et al.,
2023a). Evaluating these services for compliance,
trustworthiness, and risks is essential to ensure that
they do not become a weakness in the system’s secu-
rity. For instance, the integration of third-party com-
ponents, such as data processors of Internet-of-Things
devices, requires a careful assessment of their security
features and compliance with domain-specific stan-
dards (Tomashchuk et al., 2021).
Security Design. Building on the findings of the se-
curity analysis, the security design process focuses on
creating detailed specifications and strategies to ad-
dress the identified security challenges and demands.
This process ensures that security is embedded into
the system from the outset and not added as an af-
terthought in the context of an optional quality at-
tribute or non-functional requirement. Note that this
process includes comprehensive testing (i.e., verifica-
tion, validation) of all activities.

One of the primary activities in security design is
the adoption of security standards, heavily building
on the results of the security analysis concerning legal
regulations. By leveraging established frameworks
such as ISO/IEC 27001 (Mellado et al., 2010), the
NIST cyber security framework (Wilson and Young,
2020), or the OWASP guidelines (Varela-Vaca et al.,
2020), it can ensured that their security design aligns
with industry best practices. These standards provide
a foundation for defining security objectives (i.e., con-
fidentiality, integrity, availability) and evaluating their
implementation (Fægri and Hallsteinsen, 2006).

Security Requirements are another critical activ-
ity of this process. Derived from the domain analy-
sis, these requirements specify what the system must
achieve to protect itself against identified threats and
risks. Examples include ensuring the goals of in-
formation security, i.e., confidentiality, integrity, and
availability (Fægri and Hallsteinsen, 2006). These
goals typically lead to associated requirements to be
fulfilled, for example, through encryption (Fernandez
et al., 2015), access controls (Fernandez et al., 2016),
or redundancy mechanisms (Fægri and Hallsteinsen,
2006). Security requirements can be represented and
prioritized in different ways, ranging from decision or
feature models (Mellado et al., 2010) over goal-based
models (Kim et al., 2008) and reusable patterns (Fer-
nandez et al., 2016) to artifact annotations and con-



Table 1: Overview of the security-engineering process (italic) and activity fulfillment.
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Figure 2: Overview of iterative security-engineering extension structured according to problem space, mapping, and solution
space; including 18 characteristics, i.e., six processes (italic) and 12 activities.

straints (Villela et al., 2012).
Additionally, Data protection strategies are de-

fined during the security design process, mainly refer-
ring to the specification of mechanisms related to data
privacy, for example, using protocols including cer-
tain certificates (Mellado et al., 2008d) or enforcing
encryption and authentication mechanisms (Varela-
Vaca et al., 2019). Here, several relationships arise
regarding the compliance with legal regulations, such
as the GDPR (Tomashchuk et al., 2021).

Furthermore, security has to be considered regard-
ing a system’s business processes, such as control-
ling analyses (May et al., 2023a) or supply chain re-
plenishment (Wilson and Young, 2020). This activ-
ity involves modeling workflows in Unified Modeling
Language (UML) or as Business Process Model and
Notation (BPMN), incorporating security steps with-
out disrupting operational efficiency. Here, security
measures should be designed so that they also miti-
gate risks. For example, Segregation of Duty (SoD),
i.e., the separation of permissions in processes such as
sales, ensures that a single role cannot simultaneously
create orders, modify customer data, and approve in-
voices (Kobelsky, 2014). However, permissions and
workflows must be designed in a way that maintains
process efficiency. Paradigms such as role-based ac-
cess control can help align security with efficiency.

4.2 Mapping

The mapping perspective serves as a bridge between
the problem space and the solution space, involving
abstracting the outcomes of the security analysis and
design processes into actionable policies and models
that guide the implementation of security measures.
Security Policy Modeling and Design. The funda-
mental process of the mapping is security policy mod-
eling and design. It involves creating abstract models
that define the system’s security rules, goals, and con-
straints, including it’s business processes. These are
represented in different systematic ways. A more tra-
ditional way is related to security rules based on nat-

ural language (Varela-Vaca et al., 2019). Others refer
to more logical representations, such as configuration
rules (Guana and Correal, 2012), graph-related repre-
sentations, such as feature models (Rodríguez et al.,
2011) or attack trees to define constraints (ter Beek
et al., 2020). As a further result of this phase, con-
crete reusable artifacts (Mellado et al., 2010) or ar-
chitectural patterns (Fernandez et al., 2016) can be
developed, serving as a reference for further core as-
sets related to security. Note that comprehensive test-
ing (i.e., verification, validation) of created policies is
key to ensure their reliability.

4.3 Solution Space

The solution space focuses on implementing, verify-
ing, and validation the security requirements and as-
sociated features defined in the previous processes. It
includes two primary processes: security realization
and security testing.
Security Realization. This process involves translat-
ing security policies and designs into practical imple-
mentations, including mapping security requirements
to functional requirements related to the domain engi-
neering (Etxeberria and Sagardui, 2008). In this way,
a consolidation of existing features with the security
requirements and their implementations is achieved.
So, the process includes a variety of features to be
implemented, for example, setting up firewalls, en-
cryption protocols, access control lists, and other se-
curity mechanisms to align with the system’s (secu-
rity) design (Mellado et al., 2010). Additionally, busi-
ness processes modeled in UML or as BPMN models
should be transferred into XML format due to the shift
of involved stakeholders. Furthermore, it might be
useful to classify all implemented features according
to their level of exploitation impact, making it easier
to select a suitable risk acceptance according to stake-
holder requirements (Etxeberria and Sagardui, 2008).
One of the key tasks is also to ensure feature reusabil-
ity while considering only valid and consistent con-
figurations to avoid security misconfigurations (Myl-



lärniemi et al., 2015).
Security Testing. Security testing verifies and val-
idates the effectiveness and resilience of the imple-
mented security design. This process involves testing
legal compliance, configurations and dependencies,
incident management capabilities, and source code.

The compliance activity includes verifying that
the system adheres to legal, regulatory, and domain-
specific security requirements (Mellado et al., 2007).
Thus, compliance testing validates that all imple-
mented security features are in line with the legal and
regulatory obligations identified during the security
analysis phase. For instance, testing might involve
assessing whether data encryption, logging mecha-
nisms, or access control policies (Fægri and Hallstein-
sen, 2006) meet the standards outlined by legal regu-
lations. In addition, it ensures that security practices
evolve in response to updates in legal frameworks or
domain standards (May et al., 2023a).

Testing configurations and dependencies is related
to the verification of proper system configurations and
dependencies to ensure that there are no security mis-
configurations or overlooked vulnerabilities. This ac-
tivity includes testing environments, tools, and third-
party integrations (e.g., cross-configurations) to ver-
ify that they align with the security design (Varela-
Vaca et al., 2021). For example, access control lists,
encryption protocols, and dependency management
systems are iteratively tested to identify weak config-
urations or exploitable points (Mellado et al., 2010).
Additionally, dependencies such as third-party APIs
or external libraries are evaluated to ensure that they
do not introduce security risks (Horcas et al., 2018;
Varela-Vaca et al., 2021).

Incident management testing focuses on the
reusability and traceability of the system’s underly-
ing functions supporting the detection of and recovery
from security incidents effectively. For instance, test-
ing in the context includes verifying and validating
system’s logging and alerting functions as essential
pillars in the overall vulnerability detection process,
as well as the response mechanisms in place (Ines
et al., 2011; Williams et al., 2020). Note, that we
only focus on one part of the incident management
process in this context. Typically, incident manage-
ment relates more to a process after the actual de-
velopment of a system, i.e. deployment and opera-
tion (ISO/IEC 27000, 2022). Nevertheless, we argue
that testing reusability and traceability may increase
its reliability sustainably.

Testing source code is a crucial activity to identify
potential weaknesses, in particular, as developers’ er-
rors are a common problem. Typically, such program-
ming errors are not deliberately reported, as respon-

sible developers feel a certain amount of guilt in this
context (Dietrich et al., 2018; May et al., 2025). How-
ever, this makes it even more important to implement
testing strategies oriented towards features, products,
and system families. For example, testing might in-
volve code review processes to identify reused com-
ponents and verify that their functions meet the orga-
nization’s security reference guidelines (Varela-Vaca
et al., 2020). Another aspect is related to clown-and-
own and planting, in particular regarding practices
of copying or reusing code or patterns from external
sources, such as Stack Overflow, GitHub, or large-
language models. Here, developers may inadver-
tently introduce vulnerabilities by copying insecure
code snippets or patterns, including improperly im-
plemented cryptographic functions, insecure default
configurations, or undocumented dependencies (May
et al., 2025).

4.4 Documentation

In parallel to each process and its activities, a com-
prehensive documentation has to be made, at best
based on one centralized repositories for different pur-
poses (Varela-Vaca et al., 2021; May et al., 2023a).
Note that our examples may be case-dependent and
do not include all possible repositories.

In the problem space, security analysis findings
are stored, such as domain-specific requirements,
compliance regulations, threat models, and risk as-
sessments (Williams et al., 2020; Tomashchuk et al.,
2021). This documentation serves as a reference for
understanding the security landscape and forms the
basis for security design, whose information is also
stored, for example, including security requirements
and architectures (Guana and Correal, 2012; Myl-
lärniemi et al., 2015).

During the mapping phase, the documentation
evolves to include security policies, models (e.g.,
variability models, BPMN models), and abstract de-
signs (Horcas et al., 2013; May et al., 2023a). At best,
the documentation in this phase consolidates all find-
ings, models, and designs into a single reference that
guides developers, testers, and other stakeholders, fa-
cilitating consistency and efficiency across PLE.

In the solution space, the documentation focuses
on implementation and testing artifacts. They include
detailed records of configurations, dependencies, test
cases, test results, and incident management proto-
cols (Wilson and Young, 2020; Varela-Vaca et al.,
2021). For example, reusable test scripts, validated
configurations, and incident response plans are stored
to streamline implementation and support audits. This
documentation also contains feedback from testing



and monitoring, which drives continuous and iterative
improvement (Mellado et al., 2008a; Varela-Vaca and
Gasca, 2015).

5 DISCUSSION

In the following, we describe a selection of major im-
plications based on our results as well as challenges
that still remain, leading to further research directions.
Consideration of Business Processes. The limited
attention to business processes within existing se-
curity frameworks and workflows highlights a gap.
Modern systems increasingly rely on process mod-
eling, such as BPMN, to define workflows involving
tasks, interfaces, and roles (May et al., 2023a). How-
ever, the integration of security considerations at this
stage is often overlooked (cf. Table 1). Secure BPMN
modeling ensures that access controls, role permis-
sions, and interface protections are embedded early in
the development lifecycle. By transforming BPMN
into machine-readable formats like XML, supported
by frameworks such as OWASP XML Security, these
processes become secure and executable. This ap-
proach not only enhances security but also maintains
operational efficiency and compliance with industry
standards such as ISO/IEC 27000 (2022).
Incident Management in Early Development
Phases. Incident management, while critical, is
typically addressed in operational contexts post-
deployment (Tøndel et al., 2014). This narrow focus
neglects the importance of reusable, traceable, and
early incident management mechanisms during devel-
opment. By testing functions related to logging, alert-
ing, and recovery in pre-deployment, systems can im-
prove their ability to detect and respond to incidents.
For example, not only security-critical systems (e.g.,
ERP systems) but also systems with special require-
ments to safety (e.g., cyber-physical systems in man-
ufacturing) can benefit from such tests. We believe
that business process and their models may also ben-
efit in this context. For instance, a log file can be
generated after completing a process step (e.g., order
creation), or dependent systems can be configured to
create logs at these points to enable recovery and en-
hance security. Overall, we argue that validating in-
cident response templates as part of pre-deployment
testing enhances preparedness and ensures that secu-
rity measures remain robust throughout the develop-
ment lifecycle.
Comprehensive Source-Code Testing. We argue
that, although source-code testing is a well-known
research field (Varela-Vaca et al., 2019), it is often

neglected in the analyzed literature. Furthermore,
testing is typically only conducted in feature-based
or product-based ways. However, family-based test-
ing might also be a feasible strategy, involving cross-
configurations and -dependencies between systems of
a larger product portfolio (May et al., 2024a). Testing
efforts should also address novel challenges related to
planting, such as vulnerabilities introduced through
reused code from external sources, i.e., clone-and-
own (Krüger and Berger, 2020). Due to the increas-
ing application of large-language models, we expect
an even growing challenge in this context. In general,
technologies related to artificial intelligence may be
particularly prone to misbehavior, leading to signif-
icant risks related to their reliability and trust (May
et al., 2024b).
Standard Adoption and Compliance. Not surpris-
ingly, the adoption of domain legal regulations and
standards (e.g., manufacturing, healthcare) remains
inconsistent, reflecting the challenges in aligning
domain-specific needs with established PLE work-
flows (Kenner et al., 2021). Integrating periodic
reviews of compliance measures into PLE ensures
alignment with evolving regulations and industry
practices, supporting the successful transfer of so-
lutions from theory into practice. However, stan-
dards are often resource-intensive to implement, de-
terring their practical application in smaller-scale
or resource-constrained projects. We argue that
lightweight adaptations tailored to specific domains,
combined with automated compliance tools, could
streamline their adoption.
Third-Party Dependencies and Services. The re-
liance on third-party services introduces significant
vulnerabilities, such as different levels of authentica-
tion, non-isolation, or the use of legacy systems with
inadequate security protection functions (Benaroch,
2021). However, only few of the analyzed studies
provide comprehensive strategies for managing these
dependencies. We argue that standardized evalua-
tion criteria for third-party components in PLE, in-
cluding compliance and risk assessments, are essen-
tial (NIST SP 800-30r1, 2012). Furthermore, more
preventive approaches rather than reactive approaches
are needed to better meet the security objectives of the
CIA triad (Samonas and Coss, 2014).

5.1 Threats to Validity

There are several potential threats that might impair
the internal (i.e., confidence that variables caused ef-
fects) and external validity (i.e., generalizability of
findings to other settings). These are outlined in the
following.



Internal Validity. Threats to internal validity include
potential biases from subjective decisions in defining
meta-characteristics and revising the framework ex-
tension iteratively. While the literature selection re-
lied on three major literature databases, we may not
considered all relevant research. To mitigate this, we
employed snowballing to minimize the probability of
overlooking relevant literature. Additionally, the ter-
minology in the analyzed papers may have been mis-
interpreted. To address this, ambiguous terms were
discussed and clarified among the authors. Vary-
ing levels of detail in the publications posed another
threat, which we addressed by ensuring that the first
and second authors discussed the extracted data from
the selected works to minimize potential knowledge
bias. In general, threats to internal validity were ad-
dressed by adopting a systematic methodology (Nick-
erson et al., 2013) that integrates two complementary
construction strategies (cf. Figure 1) while actively
involving experienced researchers and practitioners
throughout the identification, synthesis, and discus-
sion process.
External Validity. The external validity is influenced
by its narrow focus on secure PLE frameworks and
workflows, potentially overlooking broader security
approaches. Although the inclusion criteria ensured
relevance, restricting the analysis to 49 papers may
have excluded additional valuable perspectives. How-
ever, by including literature published between 2005
and 2024, we argue that we considered a sufficient
time frame, while ensuring timeliness of the analyzed
research. Furthermore, the lack of a practical evalua-
tion limits the generalizability to real-world contexts.
To address this limitation, a comprehensive evaluation
is already planned for future research by validating
the extension in both PLE and security communities.

6 RELATED WORK

Security in PLE is increasingly recognized within the
variability community. For instance, Krieter et al.
(2018) explored securely handling product lines in
cloud environments using Intel SGX, while Kenner
et al. (2020) proposed representing attack vectors
through feature models. Additionally, Varela-Vaca
et al. (2020, 2021, 2023) leveraged feature models
for automated verification and management of system
vulnerabilities and security requirements.

Beyond solutions for specific security concerns,
the niche field of security-engineering frameworks
and workflows in PLE has emerged, forming the
foundation of our empirical-to-conceptual construc-
tion strategy (Nickerson et al., 2013). Three key ap-

proaches stand out: Fægri and Hallsteinsen (2006) in-
troduced a reference architecture for security-focused
decision support in domain engineering; Mellado
et al. (2007) developed the SREPPLine framework for
systematic security-requirements engineering, further
refined until 2010 (Mellado et al., 2010). Varela-Vaca
et al. (2019) created the CyberSPL framework for
verifying security requirements, features, and compli-
ance. A closely related work is by May et al. (2023a),
who proposed a PLE framework for secure ERP sys-
tems. While sharing our focus on integrating security
engineering as a third pillar in PLE, their work is spe-
cific of ERP systems and business processes.

Although prior work has partially integrated
security and PLE (cf. Table 1), our ISO/IEC
27000-compliant extension provides a more holistic,
domain-independent perspective. By systematically
detailing processes, activities, and their relationships,
we aim to enhance understanding of security engi-
neering in PLE, treating security as an equally impor-
tant cross-cutting concern.

7 CONCLUSION

In this paper, we presented an extensions of the PLE
framework (Pohl et al., 2005), called security engi-
neering. Our approach builds on a systematic de-
velopment process (Nickerson et al., 2013), includ-
ing the analysis of 49 papers related to secure PLE.
Additionally, we relied on the ISO/IEC 27000 (2022)
series to guarantee that the overall extensions com-
plies with established standards. In this way, we
aimed to facilitate the transfer of theoretical knowl-
edge into business practice. Overall, the extension is
currently domain-independent, but may be transfer-
able to other domains (e.g., manufacturing) by apply-
ing domain-specific standards and regulations in the
problem space. Besides the presented six processes
and 12 activities of the extension, we derived further
implications and challenges related to business pro-
cesses, incident management, source-code testing, se-
curity standards, and third-party services.

In this context, we argue that further research is
needed, for example, to address gaps in successfully
handling legal regulations and security standards in
PLE as well as to protect business processes and their
variability throughout PLE development. To this end,
we already planned several future studies, includ-
ing comprehensive evaluations based on case stud-
ies and multi-stage expert interviews within the PLE
and security communities. For the security evaluation
within the planned case study, we will combine differ-
ent approaches: Specifically, the established STRIDE



framework (Khan et al., 2017) will be used to ana-
lyze potential threats during the design phase (e.g.,
business process modeling), while the Cyber Kill
Chain (Yadav and Rao, 2015) will assess the frame-
work’s effectiveness against potential attack phases
(e.g., source-code testing or logging).
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