
Asking Security Practitioners: Did You Find the Vulnerable
(Mis)Configuration?

Richard May
Harz University of Applied Sciences

Wernigerode, Germany
rmay@hs-harz.de

Christian Biermann
msg services gmbh, Harz University of Applied Sciences

Hamburg, Germany
christian.biermann@msg.group

Jacob Krüger
Eindhoven University of Technology

Eindhoven, Netherlands
j.kruger@tue.nl

Thomas Leich
Harz University of Applied Sciences

Wernigerode, Germany
tleich@hs-harz.de

Abstract
With ever evolving software, reliability and quality assurance are
facing growing complexity and security issues. Particularly, inter-
connected and configurable systems are threatened by (mis)config-
urations that can lead to exploitable vulnerabilities. Unfortunately,
there is limited information on how such configuration vulnera-
bilities occur or how practitioners deal with these. To tackle this
gap, we investigated the connections between (mis)configurations,
vulnerabilities, and their treatment by conducting a survey with 41
security practitioners who have encountered configuration vulner-
abilities in their work. More precisely, our objectives were to under-
stand the causes, prevalence, severity, and treatments of such vul-
nerabilities. We found that configuration vulnerabilities are preva-
lent and severe in practice. They primarily stem from dependency
issues, outdated software, and inconsistent (cross-)configurations;
are typically influenced by human errors; and are either identified
during testing or, in the worst case, during deployment and oper-
ation. Generally, configuration vulnerabilities are detected due to
security incidents or through word-of-mouth, implying that more
preventive security management is required—ideally at an early
stage and as part of a holistic security-engineering process. Overall,
we aim to enhance the understanding of researchers and practition-
ers regarding current practices related to handling configuration
vulnerabilities as well as open challenges.

CCS Concepts
• Software and its engineering; • Security and privacy → Vul-
nerability management; Software security engineering;

Keywords
variability, misconfiguration, vulnerability management, security,
practitioners, survey, questionnaire

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VaMoS 2025, Rennes, France
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1441-2/25/02
https://doi.org/10.1145/3715340.3715439

ACM Reference Format:
Richard May, Christian Biermann, Jacob Krüger, and Thomas Leich. 2025.
Asking Security Practitioners: Did You Find the Vulnerable (Mis)Configuration?.
In 19th InternationalWorking Conference on Variability Modelling of Software-
Intensive Systems (VaMoS 2025), February 04–06, 2025, Rennes, France. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3715340.3715439

1 Introduction
Ensuring high-quality and reliable software systems is becoming
more and more challenging [76], due to the increasing complexity
of such systems [20]. In recent years, security has become one of the
most important quality attributes related to system reliability [56,
61, 62]. Concurrently, growing configurability [21], interconnec-
tions and dependencies between different features and systems [55],
as well as system evolution [42] have increasingly contributed to
the emergence of misconfigurations, unwanted feature interactions,
unexpected bugs, or even system failures [48, 67, 92]. So, misconfig-
urations tend to cause security vulnerabilities that can be exploited
by malicious attackers, usually leading to major violations of a
system’s confidentiality, integrity, and availability [44, 45, 63].

Typically, security experts are hired to evaluate software systems
and their configurations regarding potential risks for vulnerabilities
and malicious exploitation (i.e., attack likelihood and impact) [36,
69]. For example, penetration tests are used to identify and assess
specific vulnerabilities [19] or attack trees are modeled to trace and
understand attack scenarios [43, 46]. Due to the rising number of
vulnerabilities and exploits, the experiences gained and required
by security experts is growing fast. Consequently, surveying such
experts offers a valuable opportunity to synthesize and benefit from
their lessons learned and best practices.

Using this opportunity, we asked security practitioners to share
their experiences on vulnerabilities caused by configuring (i.e., con-
figuration vulnerabilities). Our research goal was to understand
the connections between configurations and vulnerabilities,
ü the main causes of these vulnerabilities, how prevalent
and severe they are, and, � how they can be treated. In more
detail, we conducted an online questionnaire among 41 security
practitioners who already experienced configuration vulnerabilities.
There has already been research studying such vulnerabilities (cf.
Section 7), for example, May et al. [55] analyzed developer discus-
sions on vulnerable system configurations. Loureiro [48] studied

30

https://orcid.org/0000-0001-7186-404X
https://orcid.org/0009-0000-6001-2431
https://orcid.org/0000-0002-0283-248X
https://orcid.org/0000-0001-9580-7728
https://doi.org/10.1145/3715340.3715439
https://doi.org/10.1145/3715340.3715439
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3715340.3715439&domain=pdf&date_stamp=2025-05-28

VaMoS 2025, February 04–06, 2025, Rennes, France Richard May, Christian Biermann, Jacob Krüger, and Thomas Leich

misconfiguration prevention strategies and Dietrich et al. [22] an-
alyzed the human aspects of vulnerable misconfigurations from
an operators’ perspective. However, to the best of our knowledge,
there is currently no comparable study (i.e., thematic focus, sample
size) focusing on practitioners’ voices on main causes, prevalence,
and common mitigation practices.

In detail, our contributions are:
• A comprehensive and practice-oriented overview of confi-
guration vulnerabilities and their properties.

• A discussion of the main causes, severity, and common prac-
tices for effectively treating configuration vulnerabilities.

• An open-access repository containing our questionnaire and
the anonymous answers of all participants to enable replica-
tions and validations of our study.1

Through our findings, we aim to shed light on the connections be-
tween (mis)configuring and vulnerabilities from a practical perspec-
tive. Our results are intended to help researchers and practitioners,
especially in the domains of variability and security, learn from the
experience of security experts. Overall, our work bridges the gap
between theoretical research and real-world practice on this topic.

2 Background
Next, we introduce key background information, specifically system
configuring and vulnerability management.

2.1 System Configuring
Modern software has become increasingly configurable to make sys-
tems and applications adaptable to specific use cases and associated
stakeholder requirements [2, 7]. Typically, configurable systems rely
on a set of features (i.e., user-visible functions) that can be enabled,
disabled, and combined to create a variety of customized system
variants [34, 71, 77]. System configuring may involve different types
of configurations, oriented towards specific areas like software con-
figuration (e.g., application settings) [77, 87], network configuration
(e.g., routing protocols) [11, 32], storage configuration (e.g., cloud
and database system access patterns) [13, 23, 54], server configu-
ration (e.g., load balancer) [8, 30], and security configuration (e.g.
security measures) [14, 16]. Furthermore, these configurations have
numerous relations and interdependencies. For example, a security
configuration typically influences all other types of configurations,
which have to ensure compliance with security standards [78].

Developers usually implement system configurations using cer-
tain variability mechanisms, such as preprocessor directives [49, 82],
dependency injections [80], or feature-oriented programming [7,
15]. Such mechanisms represent variability at the implementation
level, while the organization of features, their relationships, and
dependencies are usually documented via feature models—the de-
facto standard at a conceptual level [18, 66, 79]. From a more techni-
cal perspective, configuration files store the allowed configurations
at the implementation level (e.g., specifying constraints) [11, 75].
Particularly constraints are essential to document, since certain
features may depend on each other while other features cannot
co-exist (i.e., they are mutually exclusive) [59, 88]. Referring to
the latter, faulty configurations (i.e., misconfigurations) may lead

1https://doi.org/10.5281/zenodo.14007881

to non-trivial problems, ranging from vulnerabilities over bugs
to system failures that might cause fatal consequences (e.g., in
safety-critical systems) [55, 56]. Accordingly, verifying system con-
figurations is key to ensure reliable and secure systems [1, 72, 83].

2.2 Vulnerability Management
The reliability of modern software systems is increasingly linked
to IT security [35, 61]. IT security refers to the practices and mea-
sures used to protect all types of software systems, comprising a
variety of ways to ensure confidentiality, integrity, and availabil-
ity [37, 69, 74]. Security measures or patterns that involve concrete
strategies to protect systems (e.g., security policies) are typically
oriented towards the mitigation of threats and risks. Threats are
events with a potential negative impact on a system [36, 37, 69],
such as unwanted feature interactions or configuration errors (i.e.,
misconfigurations) [92]. Such events are triggered mainly by certain
unsecured system conditions, typically in the context of vulnerabil-
ities (i.e., system weaknesses) [36, 37]. Although not every vulnera-
bility is necessarily critical and may be considered as an acceptable
risk, exploiting vulnerabilities (e.g., via SQL injections [33]) often
results in violated security objectives and in the associated security
risks [36, 69]. The actual risk is specified based on the likelihood
and impact of potential exploits [36, 38], and is usually listed in
incident databases (e.g., National Vulnerability Database, Artificial
Intelligence Vulnerability Database) that provide scales to classify
and rate vulnerabilities [43, 57, 60].

Detecting and managing vulnerabilities is complex and has be-
come more difficult, due to the increasing number of features and
their respective configuration options [67, 81, 90]. To prevent vul-
nerabilities, a systematic security-management process should be
performed during development and maintenance [37, 68]. In this
context, features, products, and entire product lines should be sys-
tematically tested (i.e., verified) to minimize the risk of security-
related incidents [54, 83].

3 Methodology
In the following section, we describe our study’s goal, research
questions, methodology, and conduct (cf. Figure 1).

3.1 Goal and Research Questions
Our main goal was to understand the relations between configur-
ing and vulnerabilities. This included identifying and discussing
properties and practices related to detecting and treating vulnera-
bilities. To accomplish this goal, we formulated the following three
Research Questions (RQs):
RQ1 ü What are causes for configuration vulnerabilities?

First, we aimed to identify the primary causes that lead to vul-
nerabilities in the context of configuring a software system.
Specifically, our focus was on collecting insights on the trig-
gers to find common patterns and highlight the most critical
causes for configuration vulnerabilities.

RQ2 How prevalent and severe are configuration vulnera-
bilities in the real world?
Second, we aimed to determine the frequency and severity
of configuration vulnerabilities as experienced by security
experts. Our goal was to collect data on how often these

31

https://doi.org/10.5281/zenodo.14007881

Asking Security Practitioners: Did You Find the Vulnerable (Mis)Configuration? VaMoS 2025, February 04–06, 2025, Rennes, France

e-mail
70+

42

2. survey distribution

LinkedIn

survey participation

1. questionnaire conception

S1: demographic data

S2: main causes, prevalence, and severity

S3: experiences

3. selection and analysis

discussing & concluding

response screening

coding and analysis

41

Figure 1: Overview of our research method, with numbers indicating the amount of practitioners involved.

vulnerabilities occur in practice and the impact they can have
on systems and operations.

RQ3 � What are common practices to treat and prevent con-
figuration vulnerabilities?
Lastly, we aimed to explore and discuss strategies and prac-
tices employed by experts to address and prevent configura-
tion vulnerabilities.

Through our work, we aim to provide a comprehensive overview
of the connections between software configuring and vulnerabil-
ities by building on real-world experiences of security experts.
Through this overview, we contribute insights for practitioners
and researchers that can help to increase their awareness for such
vulnerabilities and related practices; providing a helpful means
for them to safeguard their software systems and develop new
techniques to prevent vulnerabilities.

3.2 Questionnaire Design
We developed our questionnaire based on established guidelines for
conducting (online) questionnaires in software engineering [28, 64].
The first and second authors created the questionnaire using Mi-
crosoft Forms to build and host the online questionnaire. Iteratively,
the third author independently reviewed the questionnaire two
times. Besides a general introduction into the topic, we provided
a description of how the participants’ data was used as well as a
consent form. Participants could only take part in the questionnaire
if they gave their informed consent and voluntarily. We collected
all data in a way that no conclusions could be drawn about the
participants or their companies (i.e., anonymized data collection).
Furthermore, all data was stored in an encrypted form on a server
in Germany.

Overall, our questionnaire involved 20 questions in English and
took about 10–15 minutes. The research questions served as ba-
sis for the questions and their ordering. In most cases, we used
closed-ended questions requiring participants to choose specific
items. For these, we typically provided an additional free-text op-
tion to add items not listed. Moreover, in some cases, we added
the option not to answer a question (i.e., prefer not to say) in case
participants may have had privacy concerns or constraints by their
company. The closed-ended questions involved questions in which
we explicitly asked for opinions based on Likert scales (e.g., ranging
from strongly agree to strongly disagree) or number-based scales
(e.g., ranging from 1–very rarely to 10–very frequently). In addi-
tion, we included questions to rank certain items according to their
perceived relevance. We further relied on a few open-ended (i.e.,
free text) questions, typically to obtain more elaborate answers. All

but one question were mandatory (i.e., one optional open-ended
question for further thoughts on triggers).
Scoping. The target group of our study were IT security practition-
ers who already experienced configuration vulnerabilities in their
work. Besides this background, we did not define any further restric-
tions. We combined three different distribution channels to promote
our online questionnaire, aiming to reach as many participants as
possible. These channels included 1) the personal networks of the
authors, 2) the LinkedIn network of the first author, and 3) sharing
of the invitation through interested participants (i.e., snowballing).
Structure. Our questionnaire involved 20 questions structured into
three sections: demographics (6 questions), main causes, prevalence,
and severity (9 questions), and experiences (5 questions).

Section 1 (demographics). In the first section, we asked for demo-
graphic data, i.e., questions on practical experience, employment,
and company. We used this data to assess the responses (e.g., little
versus much experience) and to put certain responses into the con-
text of specific participant groups. Precisely, we asked participants
to select single-choice options regarding their years of experience
(Q01), the country in which they are currently employed (Q02, free
text), their company’s main industry (Q03), whether the company
operates internationally (Q04), and how many employees are in
their company (Q05). Finally, they should indicate the area in which
they are currently working (Q06, multiple answers). For each ques-
tion, participants had the opportunity to use a prefer not to say
option to ensure privacy in addition to anonymizing the data.

Section 2 (main causes, prevalence, and severity). In the second
section, we asked for the participants’ perceptions about vulnera-
bilities and configurability in software systems to answer RQ1 and
RQ2. First, we asked the participants to describe how vulnerabili-
ties and configuring are connected in their daily work (Q07). After
that, we used two questions based on five-level Likert scales to as-
sess the relevance of configuration-related vulnerabilities (Q08) and
specific triggers of vulnerabilities (Q09), including an option to add
other triggers (Q10, optional free text). The next five questions com-
prised a ranking of development phases in which vulnerabilities
are typically detected (Q11) and an assessment of vulnerability risks
(Q12–Q15, ten-level scales). Here, we intentionally oriented the as-
sessment towards established security standards (i.e., ISO/IEC 27000
series [36], NIST Guide for Conducting Risk Assessments [69]), re-
lying on severity, likelihood, impact, and exploits.

Section 3 (experiences). The last section mainly referred to experi-
ences with configuration vulnerabilities. In particular, we asked in
which domains the participants experienced the vulnerabilities (Q16,
multiple answers), how they became aware of them (Q17, multiple

32

VaMoS 2025, February 04–06, 2025, Rennes, France Richard May, Christian Biermann, Jacob Krüger, and Thomas Leich

answers), how they fixed (Q18, multiple answers) and prevented
(Q20, multiple answers) them, and what the greatest impact of an
exploit they experienced was (Q19, free text). We again offered the
opportunity to use a prefer not to say option. Our objective was
to use the data we collected in this section to answer RQ3 and to
complement our answers to RQ1 and RQ2.

3.3 Conduct
We distributed our questionnaire through the channels mentioned
above: personal network, LinkedIn, and snowballing. In total, we
sent 66 invitations via e-mail to security experts in the authors’ per-
sonal network. Furthermore, the first author shared a post through
their LinkedIn network, with the request to contact us if anyone is
interested in participating. Four people reached out via the LinkedIn
messenger and we shared a link to the questionnaire with them.
We encouraged all participants to share the invitation with other
potentially interested experts, which led to an unknown number
of further people we reached via this distribution channel. After
closing the questionnaire, we received a total of 42 responses.

To analyze the data, we downloaded the Excel spreadsheet cre-
ated by Microsoft forms. In a first review step, the first author
screened the responses and excluded one due to insufficient data
quality (e.g., using random characters in mandatory questions to
skip them). Consequently, we considered 41 responses for our ac-
tual data analysis. The first author then applied open-coding and
card sorting to gather recurring patterns and to identify relevant
categories with their associated data; particularly for the free-text
questions. The first two authors discussed all results through two
meetings and iteratively refined them until they reached consensus.

4 Results
In the following, we describe the results of our questionnaire, struc-
tured according to the three individual sections.

4.1 Demographics
In Table 1, we present the results related to our participants’ de-
mographics. Most of our participants (39 %) have between 6 and
10 years of experience in the area of security (Q01), followed by
29 % with 0 to 5 years, 17 % with 11 to 15 years, and 15 % with more
than 15 years. All of our participants are from European countries
(Q02), mainly Central-Europe including Switzerland (24 %) and Ger-
many (22 %). Other countries involve, for example, Ukraine (15 %),
France, Spain, and Austria (10 % each). The companies for which
our participants work (Q03) are quite diverse. For instance, they
operate in more traditional IT sectors (34 %), healthcare (20 %), fi-
nance (17 %), or manufacturing (15 %). Only 10% are working on
research and education, underpinning the practical orientation of
our study. The companies (Q04) typically operate internationally
(90 %) rather than nationally (10 %), including (Q05) small- (20 %) to
medium-sized companies (53 %) and also larger companies or corpo-
rate groups (27 %). Not surprisingly, our participants’ employment
areas (Q06) mainly relate to development (90 %). Other areas overlap
with development, such as research, management, or operations
(29 % each). Rarely mentioned other areas include, for example,
security consulting.

Table 1: Overview of the responses for demographics (n = 41).

question answers responses

Q01: years of experience 0 – 5 12 29 %
6 – 10 16 39 %
11 – 15 7 17 %
16+ 6 15 %

Q02: country Switzerland 10 24 %
Germany 9 22 %
Ukraine 6 15 %
France 4 10 %
Spain 4 10 %
Austria 4 10 %
Netherlands 3 7 %
Poland 1 2 %

Q03: main industry IT 14 34 %
healthcare 8 20 %
finance 7 17 %
manufacturing 6 15 %
research & education 4 10 %
other 2 4 %

Q04: internat. operation yes 37 90 %
no 4 10 %

Q05: employees 0 – 10 8 20 %
11 – 100 12 29 %
101 – 500 10 24 %
501 – 1000 2 5 %
1001+ 9 22 %

Q06: employment area development 37 90 %
research 12 29 %
management 12 29 %
operations 12 29 %
other 3 6 %

4.2 Main Causes, Prevalence, and Severity
The connections between configuration vulnerabilities and our par-
ticipants’ daily work (Q07) are quite diverse. However, we identified
five recurring patterns in their responses. Not surprisingly, most
participants are typically concerned with more general secure ap-
plication configuring, such as modeling secure configurations or
DevSecOps (54 %). Overall, 24 % have experiences in security-related
risk assessments of configurations, 17 % in secure versioning, and
10 % each in dependency checking as well as defensive configuring.
We found several more experiences, which were mentioned fewer
times, involving variant-richness and its reduction (5 %), counter-
measure configuring (2 %), and plugin variety (2 %). Most of our
participants strongly agreed (59 %) or agreed (39 %) that configura-
tion vulnerabilities are a relevant topic in practice (Q08). Only one
person neither agreed nor disagreed with this statement.

Asking for the relevance of different vulnerability triggers (Q09),
our participants mentioned dependencies, outdated software, and
inconsistent configurations as most relevant (cf. Figure 2). All other
triggers were also supported by participants, but we identified

33

Asking Security Practitioners: Did You Find the Vulnerable (Mis)Configuration? VaMoS 2025, February 04–06, 2025, Rennes, France

not at all relevant somewhat relevant

moderately relevant highly relevantrelevance in percentages

trig
g

e
rs

0

10

20

30

40

50

60

70

80

pr
og

ra
m

m
in
g

er
ro

rs
fe

at
ur

e

in
te

ra
ct
io
ns

in
co

ns
is
te

nt

co
nf

ig
ur

at
io
ns

de
pe

nd
en

ci
es

ev
ol
ut

io
na

ry

is
su

es

in
su

ffi
ci
en

t s
ys

te
m

ve
rif

ic
at

io
n

ou
td

at
ed

so
ftw

ar
e

Figure 2: Relevance of vulnerability triggers (Q09).

testing

operation

deployment

implementation

change management

design

0% 100%
40 32 21 5 2

48

7

17

21 29

14

23 17

177

5 2

255

15 21

2629

38 12

3310

7

14

26

50

rarelyfrequently

Figure 3: Ranking of the vulnerability occurrence likelihood
in different development phases in percentages (Q11).

more disagreements or participants who rated these triggers as
only somewhat relevant. This applies in particular to programming
errors, feature interactions, evolutionary issues, and insufficient
system verification. Interestingly, evolutionary issues highlighted
diverging opinions between participants with 46% considering
them highly relevant and 32% somewhat relevant. Based on the
participants’ optional notes on triggers (Q10), we found that social
engineering is also a relevant trigger (34 %). For example, this re-
lates to compromised development hardware or copying source
code with vulnerable configurations from social platforms, such
as Stack Overflow. Other triggers that were mentioned include im-
paired product or process integrity (5 %) and a lack of configuration
overview related to configuration complexity (2 %).

According to the participants’ ranking, configuration vulnerabil-
ities typically occur or are revealed during testing and operation
(Q11, cf. Figure 3). Interestingly, the number of participants who
rated operation as most relevant is slightly higher than for testing.
In contrast, testing was rated as less relevant by fewer participants
than operation. Generally, our participants think that vulnerabilities
are less common to occur during the deployment and implementa-
tion. Change management and design were usually considered to
be the least relevant phases.

As we illustrate in Figure 4, the vulnerability risk ratings (Q12–
Q15) with respect to severity (average 7.5), likelihood (average 7.2),
impact (average 8), and exploitation (average 7.1) are quite consis-
tent. Regarding severity, most of the practitioners selected 7 (37 %)

0
1
2
3
4
5
6
7
8
9

10

severity impactlikelihood exploitation

rating

risk factor

Figure 4: Vulnerability risk rating based on perceived sever-
ity, impact, likelihood, and exploitation (Q12–Q15); including
interquartile range (boxes), rating range without outliers
(outer lines), median (inner lines), average (crosses), and out-
liers (points) with 0 – lowest rating and 10 – highest rating.

or 8 (22 %). There is also a great likelihood of configuration vul-
nerabilities, as implied by 37% of our participants ranking it as a
7 and 22% as an 8. Referring to impact, we can see a similar trend
(i.e., 34 % refer to 7), with the additional note that 24 % selected a 10.
Regarding the likelihood of exploitations, 32 % of our participants
referred to an 8 and 29 % to a 7.

4.3 Experiences
The domains in which our participants experienced configuration
vulnerabilities (Q16) are mainly related to server and storage de-
velopment (93 %), web development (88 %), system and software
development (46 %), as well as mobile development (32 %). One
participant did not want to answer this question. As we show in
Table 2, our participants stated that they usually become aware of
configuration vulnerabilities (Q17) through actual security incidents
(90 %), word-of-mouth (83 %), regular software testing (76 %), and
security scans (73 %). Fewer participants referred to vulnerability
disclosures (34 %), new reports (24 %), or penetration testing (15 %).

Typical fixes (Q18) involve configuration changes (85 %), version
patches (83 %), risk acceptance (68 %), and implementing counter-
measures (49 %). The exploits with the most impact (Q19) vary and
heavily depend on whether a participant was involved in the secu-
rity process of one application or a whole system as well as how
many end users were impacted. For example, 29 % of our partici-
pants mentioned more than 10,000 impacted users. In contrast, 20 %
stated that only more than 100 users were impacted. Interestingly,
some participants explicitly mentioned “almost” impacts (5 %) and
reputation damage (2 %).

Regarding feasible prevention strategies (Q20), we found (cf. Ta-
ble 2), not surprisingly, that regularly reviewing and updating con-
figurations as well as conducting regular security scans and/or au-
dits are typical countermeasures (90 % each). Moreover, developing
and enforcing security policies and procedures (76 %), integrating
security into the development process (51 %), and using config-
uration management tools (37 %) have been used as prevention
strategies by our participants. Interestingly, 12 % of our participants
additionally described penetration testing as a prevention strategy.

34

VaMoS 2025, February 04–06, 2025, Rennes, France Richard May, Christian Biermann, Jacob Krüger, and Thomas Leich

Table 2: Overview of the awareness triggers (Q17), common
fixes (Q18), and prevention strategies (Q20) concerning con-
figuration vulnerabilities.

question answers responses

Q17: awareness security incident 37 90 %
word-of-mouth 34 83 %
software testing 31 76 %
security scans 30 37 %
vulnerability disclosure 14 34 %
news report 10 24 %
penetration testing 6 15 %
cyber-threat intelligence 1 2 %
threat report 1 2 %

Q18: fixes configuration changes 35 85 %
patching 34 83 %
risk acceptance 28 68 %
countermeasures 20 49 %
decommission system 1 2%
compensating controls 1 2 %

Q20: prevention regularly reviewing 37 90 %and updating configurations
regular security scans/audits 37 90 %
security policies and procedures 31 76 %
integrating security 21 51 %into the development process
configuration management tools 15 37 %
penetration testing 5 12 %
code reviews 1 2 %

5 Discussion
After describing our results, we now discuss our consequent find-
ings to answerü RQ1, RQ2, and � RQ3.

5.1 ü RQ1: Main Causes
Not surprisingly, our results indicate that configuration vulnera-
bilities are a relevant topic for practitioners in their daily work,
which is further supported by previous research [22, 47, 93]. The
responses regarding the main causes for such vulnerabilities point
towards dependency issues, outdated software, and inconsistent
configurations. We argue that the relevance of dependency issues
reflects the challenge of managing complex (cross-)relationships
between software systems and their components, with an outdated
or insecure dependency easily causing vulnerabilities [55]. Compa-
nies may inadvertently introduce configuration vulnerabilities if
they fail to regularly update dependencies or thoroughly check the
components to integrate for security issues (e.g., when integrating
third-party services).

Interestingly, we found that evolutionary issues seem to be a
less relevant cause in the perception of practitioners (cf. Figure 2).
This is despite evolution and dependency issues being obviously
interconnected [3], such as delayed or missing updates [22]. Evolu-
tion issues often occur due to configuration drift between develop-
ment phases, such as implementation, testing, and deployment, or

within different branches in the same phase if configurations are
not synchronized [25]. Tools that enforce configuration manage-
ment policies have been suggested to maintain consistency [24], for
example, automated dependency management tools to ensure that
dependencies are regularly checked for known vulnerabilities [70].
Moreover, the lifecycle phases in which dependencies are integrated
seem crucial: typically development and early testing [36, 69]. En-
suring proper dependency management during these phases is
key to prevent configuration vulnerabilities in later development
phases. Otherwise, the impact of such vulnerabilities can become
even worse, as stated by many of our participants who faced such
vulnerabilities in the real world (cf. Figure 3).

Other common issues, such as programming errors, social en-
gineering, or feature interactions, were reported fewer times by
our participants. In this context, we remark that practitioners may
deliberately not report programming errors or social engineering,
especially if they were responsible and may feel a certain amount of
guilt (i.e., response bias) [22]. So, our findings do not mean that such
issues are not relevant. In contrast, human errors are likely to cause
misconfigurations [6, 22]. Moreover, the complexity of software
systems and their configurable features will likely increase even
more in the future. Consequently, we expect even more challenges
in handling these complexities, and thus an increased potential
for programming errors or unwanted feature interactions causing
configuration vulnerabilities [27, 40, 54].

ü RQ1: Main Causes: Configuration vulnerabilities primarily
stem from dependency management issues, outdated software,
and inconsistent (cross-)configurations between different soft-
ware systems and components. Human errors probably have a
significant impact in this context.

5.2 RQ2: Prevalence and Severity
Generally, our participants’ ratings imply that configuration vul-
nerabilities are prevalent and severe. Based on our results, we argue
that such vulnerabilities are ubiquitous across domains, countries,
and company size, further underpinning the need for systematic se-
curity engineering and management. More specifically, we can see
in Figure 4 that severity, likelihood, impact, and exploitation are all
rated in the medium to high ranges (5 to 10). This indicates strong
concerns regarding configuration vulnerabilities’ potential to cause
harm. These insights suggest that current practices, while reason-
ably effective, may not be sufficiently robust given the constantly
evolving threat landscape and refinements of attacks [5].

Our participants’ notable agreement on severity implies chal-
lenges in maintaining secure and consistent configurations as soft-
ware complexity increases. Still, there are also a few outliers. These
indicate that configuration vulnerabilities do not necessarily have
serious consequences in every case. So, it is likely that configuration
vulnerabilities are more common than we may anticipate, since
they do not have to result in large-scale incidents or exploits [22].
Thus, we argue that configuration vulnerabilities may occur regu-
larly without having critical consequences. Existing research has
actually found that such vulnerabilities are often not recognized at
all, as it is difficult to detect them; especially if they are silent, and

35

Asking Security Practitioners: Did You Find the Vulnerable (Mis)Configuration? VaMoS 2025, February 04–06, 2025, Rennes, France

thus do not produce any error messages [94]. If silent vulnerabil-
ities are discovered by malicious actors and actual incidents (i.e.,
exploits) occur, they usually have a critical impact on the entire
software system [47, 93].

Our results further indicate that mistakes in the design, change
management, and implementation phases less frequently lead to
vulnerabilities compared to the deployment, operation, and test
phases. This could suggest that the phases that are primarily related
to the design and implementation of the systems are less likely to
lead to vulnerable configurations. However, we argue that this is
likely a misperception. Most misconfigurations and configuration
vulnerabilities originate from these phases [50, 95, 96]. However,
they are revealed only during testing in a controlled setting or, in
the worst case, during deployment and operation in a less controlled
setting with greater impact. In turn, we argue that the awareness
for configuration vulnerabilities should be improved already during
the design and development of software systems.

 RQ2: Prevalence and Severity: Configuration vulnera-
bilities are acknowledged as prevalent, with high severity and
likelihood ratings if detected and exploited. They are typically re-
vealed either in controlled settings (i.e., testing) or less controlled
settings with more critical impact (i.e., operation).

5.3 � RQ3: Treatment and Prevention
Most configuration vulnerabilities our participants experienced
were related to server, storage, and web development. This trend
is supported by security-related research, which highlights that
these domains are particularly prone to vulnerabilities occurring
and associated cyber attacks (e.g., cross-site scripting [89]); due to
the use of the internet and communication technologies [4, 10, 55].
Surprisingly, more than 83% of our participants stated that they
are aware of vulnerabilities due to security incidents and word-of-
mouth between practitioners. This clearly implies more reactive
methods being in place regarding security awareness. Consequently,
configuration vulnerabilities are apparently often recognized only
after they have been exploited or actively discussed within the
community (e.g., via Stack Overflow [55]).

Only about half of our participants mentioned that they inte-
grated security into their development process. In contrast, pre-
ventive methods through software testing also play an important
role (76 %). However, the testing seems less focused on identifying
vulnerabilities directly rather than verifying software functionali-
ties. Using security scans or vulnerability disclosures as preventive
methods seems underrepresented, or may be not effective enough to
identify vulnerabilities at an early stage in the development lifecycle.
We argue that the reasons for the limited use of preventive methods
may be related to the expensive nature of such methods [9, 22, 91]
and the global security workforce gap [17, 41].

Overall, these findings highlight the need to balance reactive
and preventive methods, ideally from an early development phase
(i.e., design, implementation). For instance, referring to the product-
line engineering framework [7], we strongly support the idea to
include a security-engineering phase between domain engineering
and application engineering [53, 61]. Moreover, as suggested by

four participants, defensive configuring may be another feasible
strategy at implementation level. For example, this may include
defense-in-depth (re)configuration with privilege separation [39].

We can observe a similar trend regarding security fixes. Here,
configuration changes and the prompt application of version patches
are common reactive methods (each mentioned by more than 83 %).
However, these should be supported by preventive methods to an-
ticipate potential vulnerabilities, such as regular threat modeling
and automated configuration checks. Accepting risks strategically
(68 %) is a short-term, less expensive workaround [31], but clearly
highlights the need for long-term strategies. To implement such
strategies, enhanced prioritization frameworks and resource alloca-
tion can be helpful means.

Surprisingly, there is a quite low percentage of participants that
mention the use of configuration management tools in their compa-
nies (37 %). We consider such tools as a suitable basis to prevent or
identify configuration vulnerabilities. Particularly, we emphasize
that there are already proposals in research covering different areas
of securely developing highly-configurable software, such as secure
product-line engineering [53], vulnerability management [84], and
security testing based on feature models [43, 85, 86].

� RQ3: Treatment and Prevention: Most practitioners seem
to rely on reactive methods like configuration changes to fix con-
figuration vulnerabilities after word-of-mouth or exploitation.
Preventive methods like automated (defensive) configuration
management are neglected, but should be strengthened in the
future to avoid vulnerabilities and exploits from happening.

6 Threats to Validity
We are aware of potential threats to the internal, external, and
construct validity of our work, which we outline next.

Construct Validity. Threats to construct validity refer to the opera-
tionalization of variables and measurements (i.e., the questionnaire).
The constructs of our questionnaire (e.g., severity of vulnerabilities
and their rating) may have lead to misunderstandings among our
participants. To mitigate this problem, we based our questions on
existing literature and best practices on software security to ensure
that the constructs were appropriately operationalized. In particu-
lar, the questionnaire and its terms refer to terms, definitions, and
scales defined in established security standards, specifically the
ISO/IEC 27000 series [36] and the NIST Guide to Conducting Risk
Assessments [69]. These are well-established standards security ex-
perts are familiar with. Moreover, employing Likert scales (e.g., Q08)
and closed-ended questions (e.g., Q18) may not entirely capture the
participants’ experiences and perceptions. We mitigated this threat
by using open-ended questions (e.g., Q10) and free-text options for
closed-ended questions (e.g., Q20) to allow participants to provide
more detailed responses. Nevertheless, we cannot disregard the
possibility that participants may have not answered our questions
as detailed as possible to save time. We aimed to mitigate this threat
by screening all answers at the beginning of the analysis to check
whether there were any outliers (i.e., in the responses and the time
taken)—leading to one exclusion.

36

VaMoS 2025, February 04–06, 2025, Rennes, France Richard May, Christian Biermann, Jacob Krüger, and Thomas Leich

Internal Validity. One threat related to the internal validity is
selection bias, as we invited our participants primarily through
our personal networks and LinkedIn. As a result, our participants
may not represent our target population of software security pro-
fessionals appropriately, potentially leading to biased results. To
address this threat, we carefully identified security experts and
sought to broaden our target population by encouraging partic-
ipants to distribute the questionnaire to additional professionals
within their networks. Another threat is response bias: participants
may have provided socially desirable answers rather than truthful
responses. This issue occurs particularly frequently in the context
of sensitive topics [58] including vulnerability management [22].
To address this threat, we included options like prefer not to say
(e.g., Q03) and ensured that all responses are anonymized (i.e., col-
lecting no personal data) to encourage honest answers. Generally,
there may be several threats related to how we interpreted free-
text responses (e.g., Q10), which we aimed to mitigate by involving
multiple researchers in the analysis process.

External Validity. Again, our participants may not represent the
entire population of software security professionals, which limits
the generalizability of our results. To address this, we used multiple
distribution channels to reach a broader audience and encouraged
participants to share the survey. Still, all of our participants are from
Europe, and thus their experiences are likely influenced by regional
regulations and practices. Moreover, we are aware that a larger
number of participants would have strengthened the generalization
of our findings. However, we argue that 41 participants and a return
rate of 59 % are feasible values to collect and derive reliable results
seeing the specific target group of experts we needed to invite [28].
In addition, more than 70% of our participants have at least six
years of experience in the field of security, which increases our
confidence in the results.

7 Related Work
Vulnerability Causes and Treatment. There are various works
on misconfiguration vulnerability triggers, their exploitation, and
how to treat them, in particular related to web and server con-
figuring. For instance, Loureiro [48], Martins et al. [52], and Xu
and Zhou [92] surveyed risks and general treatment strategies
oriented towards configuration vulnerabilities (e.g., misconfigured
web servers). Furthermore, there are several papers presenting tools
to detect misconfigurations leading to vulnerabilities. For example,
Li et al. [47] proposed their tool ConfVD to identify vulnerabili-
ties caused by SQL injections, while Eshete et al. [26] focused on
a tool called Confeagle to detect vulnerabilities in the context of
denial-of-service and session-hijacking attacks. Another line of
research focuses on exploiting configuration vulnerabilities. For in-
stance, Sulatycki and Fernandez [81] and Haimed et al. [29] present
threat patterns to exploit misconfigurations, providing insights
in how to build and configure applications more securely. Lastly,
researchers focus on evaluations, for instance, Moura et al. [65] re-
produced misconfigurations related to DNS services and evaluated
their severity. In contrast to such works, we aimed to capture the
state-of-practice to identify temporary problems and opportunities
for improvements.

Practitioners’ Voices. There are only few studies related to prac-
titioners’ experiences regarding configuration vulnerabilities. Man-
fredi et al. [51] studied the usability of security reports related to
TLS miconfiguration patching based on a user study with 62 stu-
dents. As part of their study on misconfigurations in open-source
Kubernetes manifests, Rahman et al. [73] conduced interviews with
nine developers to validate misconfigurations and obtain insights
into the vulnerability detection processes. Bhuiyan et al. [12] pre-
sented a survey of 51 developers to identify vulnerability discovery
strategies. Interestingly, they found that adapting configurations to
trigger misconfigurations is a promising method. Moreover, May
et al. [55] analyzed 651 Stack Overflow posts related to configu-
ration vulnerabilities, providing a broader overview of concerns
developers face.

The work closest to ours is the one by Dietrich et al. [22], who
investigated system operators’ perspectives on misconfigurations
that impact system security. They combined qualitative interviews
with a quantitative survey with more than 200 practitioners. Al-
though they did not involve security practitioners, some of their
results are in line with ours (i.e., misconfigurations are a common
issue). However, generally Dietrich et al. have another focus, which
is much more on business operations, such as setting budget re-
strictions for incident management. So, although the related work
is somewhat similar to ours and may provide partly overlapping
findings, we argue that they cover another body of knowledge that
is out of our scope. We focus on a different topic based on security
experts’ opinions, leading to novel, practice-related insights.

8 Conclusion
In this paper, we reported a questionnaire with 41 security ex-
perts on configuration vulnerabilities. Our research goal was to
understand the main causes, prevalence, severity, and treatments of
such vulnerabilities. We found that configuration vulnerabilities are
prevalent and severe. They primarily stem from dependency issues,
outdated software, and inconsistent (cross-)configurations likely
influenced by human errors. Such vulnerabilities are typically iden-
tified during testing (i.e., controlled settings) or, in the worst case,
during the deployment and operation (i.e., less controlled settings).
Overall, we found that there is a clear awareness for configuration
vulnerabilities and their impact. However, due to the common use
of reactive methods instead of more preventive ones, these vulner-
abilities are often discovered too late and lead to a larger negative
impact. Note that our results show several threats to validity (cf.
Section 6), which might affect the validity of our findings.

Although researchers have proposed methods that partially ad-
dress preventive methods, the transfer of these methods seems
rather limited. Even if the higher costs of using such practices may
be difficult to influence, we believe that they are highly valuable and
that there are major knowledge gaps regarding their availability
as well as use. In our future work, we aim to address these gaps to
provide a comprehensive overview of existing methods to mitigate
configuration vulnerabilities. For this purpose, we also aim to sup-
port the transfer of preventive research methods (e.g., defensive
configuring) into practice.

37

Asking Security Practitioners: Did You Find the Vulnerable (Mis)Configuration? VaMoS 2025, February 04–06, 2025, Rennes, France

References
[1] I. Abal, C. Brabrand, and A. Wasowski. 2014. 42 variability bugs in the Linux

kernel: A qualitative analysis. In International Conference on Automated Software
Engineering (ASE). ACM, 421–432.

[2] I. Abal, J. Melo, Ş. Stănciulescu, C. Brabrand, M. Ribeiro, and A. Wąsowski. 2018.
Variability bugs in highly configurable systems: A qualitative analysis. ACM
Transactions on Software Engineering and Methodology 26, 3 (2018), 1–34.

[3] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. 2012. Dependency solving:
A separate concern in component evolution management. Journal of Systems
and Software 85, 10 (2012), 2228–2240.

[4] M. Abomhara and G. M. Køien. 2015. Cyber security and the internet of things:
Vulnerabilities, threats, intruders and attacks. Journal of Cyber Security and
Mobility (2015), 65–88.

[5] S. AboulEla, N. Ibrahim, S. Shehmir, A. Yadav, and R. Kashef. 2024. Navigating
the cyber threat landscape: An in-depth analysis of attack detection within IoT
ecosystems. AI 5, 2 (2024), 704–732.

[6] M. Alicea and I. Alsmadi. 2021. Misconfiguration in firewalls and network access
controls: Literature review. Future Internet 13, 11 (2021), 283–298.

[7] S. Apel, D. Batory, C. Kästner, and G. Saake. 2013. Feature-oriented software
product lines. Springer.

[8] M. Arlitt and C. Williamson. 2004. Understanding web server configuration
issues. Software: Practice and Experience 34, 2 (2004), 163–186.

[9] A. Asen, W. Bohmayr, S. Deutscher, M. González, and D. Mkrtchian. 2019. Are
you spending enough on cybersecurity? Boston Consulting Group (2019).

[10] A. Bamrara. 2015. Evaluating database security and cyber attacks: A relational
approach. The Journal of Internet Banking and Commerce 20, 2 (2015), 1–16.

[11] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. 2017. A general approach to
network configuration verification. In Conference of the ACM Special Interest
Group on Data Communication. ACM, 155–168.

[12] F. A. Bhuiyan, J. Murphy, P. Morrison, and A. Rahman. 2021. Practitioner percep-
tion of vulnerability discovery strategies. In International Workshop on Engineer-
ing and Cybersecurity of Critical Systems (EnCyCriS). IEEE, 41–44.

[13] M. Bilal, M. Canini, and R. Rodrigues. 2020. Finding the right cloud configuration
for analytics clusters. In ACM Symposium on Cloud Computing. ACM, 208–222.

[14] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza. 2023. Automation for
network security configuration: State of the art and research trends. Comput.
Surveys 56, 3 (2023), 1–37.

[15] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. 2003. Feature inter-
action: A critical review and considered forecast. Computer Networks 41, 1 (2003),
115–141.

[16] B. Chung, J. Kim, and Y. Jeon. 2016. On-demand security configuration for IoT
devices. In Conference on Information and Communication Technology Convergence
(ICTC). IEEE, 1082–1084.

[17] W. Crumpler and J. A. Lewis. 2022. Cybersecurity workforce gap. JSTOR.
[18] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski. 2012. Cool

features and tough decisions: A comparison of variability modeling approaches.
In Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, 173–182.

[19] D. Dalalana Bertoglio and A. F. Zorzo. 2017. Overview and open issues on
penetration test. Journal of the Brazilian Computer Society 23 (2017), 1–16.

[20] V. Damasiotis, P. Fitsilis, and J. F. O’Kane. 2018. Modeling software develop-
ment process complexity. International Journal of Information Technology Project
Management 9, 4 (2018), 17–40.

[21] S. Dass and A. Siami Namin. 2021. Reinforcement learning for generating secure
configurations. Electronics 10, 19 (2021), 1–19.

[22] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig. 2018. Investigating system
operators’ perspective on security misconfigurations. In Conference on Computer
and Communications Security (CCS). ACM, 1272–1289.

[23] S. Duan, V. Thummala, and S. Babu. 2009. Tuning database configuration param-
eters with ituned. VLDB Endowment 2, 1 (2009), 1246–1257.

[24] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. 2016. DevOps. IEEE Software
33, 3 (2016), 94–100.

[25] M. M. Emmanuel, M. N. Ibrahim, et al. 2015. Automatic synchronization of
common parameters in configuration files. Journal of Software Engineering and
Applications 8, 04 (2015), 192.

[26] B. Eshete, A. V., K. Weldemariam, andM. Zulkernine. 2013. Confeagle: Automated
analysis of configuration vulnerabilities in web applications. In International
Conference on Software Security and Reliability (QRS). IEEE, 188–197.

[27] A. M. Gamundani and L. M. Nekare. 2018. A review of new trends in cyber
attacks: A zoom into distributed database systems. In IST-Africa. IEEE, 1–9.

[28] A. N. Ghazi, K. Petersen, S. V. R. Reddy, and H. Nekkanti. 2018. Survey research
in software engineering: Problems and mitigation strategies. IEEE Access 7 (2018),
24703–24718.

[29] I. B. Haimed, M. Albahar, and A. Alzubaidi. 2023. Exploiting misconfiguration
vulnerabilities in Microsoft’s Azure Active Directory for privilege escalation
attacks. Future Internet 15, 7 (2023), 226.

[30] Z. He, K. Li, and K. Li. 2021. Cost-efficient server configuration and placement
for mobile edge computing. Transactions on Parallel and Distributed Systems 33,

9 (2021), 2198–2212.
[31] A. Heyerdahl. 2022. Risk assessment without the risk? A controversy about

security and risk in Norway. Journal of Risk Research 25, 2 (2022), 252–267.
[32] Z. B. Houidi and D. Rossi. 2022. Neural language models for network configu-

ration: Opportunities and reality check. Computer Communications 193 (2022),
118–125.

[33] M. Humayun, M. Niazi, N. Z. Jhanjhi, M. Alshayeb, and S. Mahmood. 2020. Cyber
security threats and vulnerabilities: A systematic mapping study. Arabian Journal
for Science and Engineering 45, 4 (2020), 3171–3189.

[34] M. S. Iqbal, R. Krishna, M. A. Javidian, B. Ray, and P. Jamshidi. 2022. Unicorn:
Reasoning about configurable system performance through the lens of causality.
In European Conference on Computer Systems (EuroSys). ACM, 199–217.

[35] ISO/IEC 25010 2011. Systems and software engineering – SQuaRE - system and
software quality. Standard. ISO.

[36] ISO/IEC 27000 2018. Information technology – security techniques – information
security management systems. Standard. ISO.

[37] ISO/IEC 27001 2013. Information security management systems – requirements.
Standard. ISO.

[38] ISO/IEC 27005 2022. Information security, cybersecurity and privacy protection –
Guidance on managing information security risks. Standard. ISO.

[39] T. Jaeger. 2016. Configuring software and systems for defense-in-depth. In
Workshop on Automated Decision Making for Active Cyber Defense (SafeConfig).
ACM, 1–1.

[40] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar. 2017. Transfer
learning for improving model predictions in highly configurable software. In
International Conference on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). ACM, 31–41.

[41] C. A. Jordan. 2022. Exploring the cybersecurity skills gap: A qualitative study
of recruitment and retention from a human resource management perspective.
Northcentral University.

[42] J. Jürjens, K. Schneider, J. Bürger, F. P. Viertel, D. Strüber, M. Goedicke, R. Reussner,
R. Heinrich, E. Taşpolatoğlu, M. Konersmann, et al. 2019. Maintaining security in
software evolution. Springer.

[43] A. Kenner, S. Dassow, C. Lausberger, J. Krüger, and T. Leich. 2020. Using variability
modeling to support security evaluations: Virtualizing the right attack scenarios.
In Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS). ACM, 1–9.

[44] A. Kenner, R. May, J. Krüger, G. Saake, and T. Leich. 2021. Safety, security, and
configurable software systems: A systematic mapping study. In Systems and
Software Product Line Conference (SPLC). 148–159.

[45] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas. 2021. Systematic mapping study
on security approaches in secure software engineering. IEEE Access 9 (2021),
19139–19160.

[46] A.-M. Konsta, A. L. Lafuente, B. Spiga, and N. Dragoni. 2024. Survey: Automatic
generation of attack trees and attack graphs. Computers & Security 137 (2024),
103602.

[47] S. Li, W. Li, X. Liao, S. Peng, S. Zhou, Z. Jia, and T. Wang. 2018. Confvd: System
reactions analysis and evaluation through misconfiguration injection. IEEE
Transactions on Reliability 67, 4 (2018), 1393–1405.

[48] S. Loureiro. 2021. Security misconfigurations and how to prevent them. Network
Security 2021, 5 (2021), 13–16.

[49] K. Ludwig, J. Krüger, and T. Leich. 2019. Covert and phantom features in annota-
tions: Do they impact variability analysis?. In Systems and Software Product Line
Conference (SPLC). ACM, 218–230.

[50] I. Maganha, C. Silva, and L. M. D. F. Ferreira. 2019. The layout design in reconfig-
urable manufacturing systems: A literature review. The International Journal of
Advanced Manufacturing Technology 105 (2019), 683–700.

[51] S. Manfredi, M. Ceccato, G. Sciarretta, and S. Ranise. 2021. Do security reports
meet usability? Lessons learned from using actionable mitigations for patching
tls misconfigurations. In International Conference on Availability, Reliability and
Security (ARES). ACM, 1–13.

[52] S. L. Martins, F. M. Cruz, R. P. Araújo, and C. M. R. Silva. 2024. Systematic
literature review on security misconfigurations in web applications. International
Journal of Computers and Applications (2024), 1–13.

[53] R. May, C. Biermann, A. Kenner, J. Krüger, and T. Leich. 2023. A product-line-
engineering framework for secure enterprise-resource-planning systems. In In-
ternational Conference on ENTERprise Information Systems. Elsevier, 1–8.

[54] R. May, C. Biermann, J. Krüger, G. Saake, and T. Leich. 2022. A systematic
mapping study of security concepts for configurable data storages. In Systems
and Software Product Line Conference (SPLC). ACM, 108–119.

[55] R. May, C. Biermann, X. M. Zerweck, K. Ludwig, J. Krüger, and T. Leich. 2024.
Vulnerably (mis)configured? Exploring 10 years of developers’ Q&As on Stack
Overflow. InWorking Conference on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, 112–122.

[56] R. May, J. Gautam, C. Sharma, C. Biermann, and T. Leich. 2023. A system-
atic mapping study on security in configurable safety-critical systems based
on product-line concepts. In International Conference on Software Technologies
(ICSOFT). SciTePress, 217–224.

38

VaMoS 2025, February 04–06, 2025, Rennes, France Richard May, Christian Biermann, Jacob Krüger, and Thomas Leich

[57] R. May, J. Krüger, and T. Leich. 2024. SoK: How artificial-intelligence incidents
can jeopardize safety and security. In International Conference on Availability,
Reliability and Security (ARES). ACM, 1–12.

[58] A. McCormac, D. Calic, M. Butavicius, K. Parsons, T. Zwaans, M. Pattinson, et al.
2017. A reliable measure of information security awareness and the identification
of bias in responses. Australasian Journal of Information Systems 21 (2017), 1–12.

[59] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake. 2016. On essential
configuration complexity: Measuring interactions in highly-configurable systems.
In International Conference on Automated Software Engineering (ASE). ACM, 483–
494.

[60] P. Mell, K. Scarfone, and S. Romanosky. 2006. Common vulnerability scoring
system. IEEE Security & Privacy 4, 6 (2006), 85–89.

[61] D. Mellado, E. Fernández-Medina, and M. Piattini. 2010. Security requirements
engineering framework for software product lines. Information and Software
Technology 52, 10 (2010), 1094–1117.

[62] D. Mellado, H. Mouratidis, and E. Fernández-Medina. 2014. Secure tropos frame-
work for software product lines requirements engineering. Computer Standards
& Interfaces 36, 4 (2014), 711–722.

[63] O. Mesa, R. Vieira, M. Viana, V. H. S. Durelli, E. Cirilo, M. Kalinowski, and C.
Lucena. 2018. Understanding vulnerabilities in plugin-based web systems: An
exploratory study of Wordpress. In Systems and Software Product Line Conference
(SPLC). ACM, 149–159.

[64] J. S. Molléri, K. Petersen, and E. Mendes. 2016. Survey guidelines in software
engineering: An annotated review. In International Symposium on Empirical
Software Engineering and Measurement (ESEM). ACM, 1–6.

[65] G. C. M. Moura, S. Castro, J. Heidemann, and W. Hardaker. 2021. TsuNAME:
Exploiting misconfiguration and vulnerability to DDoS DNS. In Internet Measure-
ment Conference (IMC). ACM, 398–418.

[66] D. Nešić, J. Krüger, S. Stănciulescu, and T. Berger. 2019. Principles of feature
modeling. In Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 62–73.

[67] A. Nhlabatsi, R. Laney, and B. Nuseibeh. 2008. Feature interaction: The security
threat from within software systems. Progress in Informatics 5, 75 (2008), 1.

[68] NIST SP 800-154 2016. Guide to data-centric system threat modeling. Standard.
National Institute of Standards and Technology.

[69] NIST SP 800-30r1 2012. Guide for conducting risk assessments. Standard. National
Institute of Standards and Technology.

[70] I. Pashchenko, D.-L. Vu, and F. Massacci. 2020. A qualitative study of depen-
dency management and its security implications. In Conference on Computer and
Communications Security (CCS). ACM, 1513–1531.

[71] K. Pohl, G. Böckle, and F. Van Der Linden. 2005. Software product line engineering:
Foundations, principles, and techniques. Springer.

[72] H. Post and C. Sinz. 2008. Configuration lifting: Verification meets software
configuration. In International Conference on Automated Software Engineering
(ASE). IEEE, 347–350.

[73] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita. 2023. Security misconfigura-
tions in open source kubernetes manifests: An empirical study. ACM Transactions
on Software Engineering and Methodology 32, 4 (2023), 1–36.

[74] S. Samonas and D. Coss. 2014. The CIA strikes back: Redefining confidentiality,
integrity and availability in security. Journal of Information System Security 10, 3
(2014).

[75] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac. 2017. Synthe-
sizing configuration file specifications with association rule learning. ACM on
Programming Languages 1 (2017), 1–20.

[76] A. M. Satpute, J. Priya, J. Mishra, and S. Anilkumar. 2022. Software reliability
modelling and application in software development life cycle. International
Journal of Advances and Current Practices in Mobility 5, 123 (2022), 1577–1584.

[77] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo. 2018. Software configuration
engineering in practice: Interviews, survey, and systematic literature review.

IEEE Transactions on Software Engineering 46, 6 (2018), 646–673.
[78] K. Scarfone and P. Mell. 2010. The common configuration scoring system (CCSS):

Metrics for software security configuration vulnerabilities. NIST Interagency
Report 7502 (2010).

[79] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck, A.
Pathak, S. Trujillo, and K. Villela. 2012. Software diversity: State of the art and
perspectives. International Journal on Software Tools for Technology Transfer 14
(2012), 477–495.

[80] M. Seemann and S. van Deursen. 2019. Dependency injection principles, practices,
and patterns. Simon and Schuster.

[81] R. Sulatycki and E. B. Fernandez. 2015. Two threat patterns that exploit secu-
rity misconfiguration and sensitive data exposure vulnerabilities. In European
Conference on Pattern Language of Programs. IEEE, 1–11.

[82] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. 2011. Feature
consistency in compile-time-configurable system software: Facing the Linux
10,000 feature problem. In European Conference on Computer Systems (EuroSys).
ACM, 47–60.

[83] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. 2014. A classification and
survey of analysis strategies for software product lines. ACM Computing Surveys
47, 1 (2014), 1–45.

[84] Á. J. Varela-Vaca, D. Borrego, M. T. Gómez-López, R. M. Gasca, and A. G. Márquez.
2023. Feature models to boost the vulnerability management process. Journal of
Systems and Software 195 (2023), 1–22 pages.

[85] Á. J. Varela-Vaca, R. M. Gasca, J. A. Carmona-Fombella, and M. T. Gómez-López.
2020. AMADEUS: Towards the autoMAteD secUrity teSting. In Systems and
Software Product Line Conference (SPLC). ACM, 1–12.

[86] Á. J. Varela-Vaca, D. G. Rosado, L. E. Sánchez, M. T. Gómez-López, R. M. Gasca,
and E. Fernandez-Medina. 2021. CARMEN: A framework for the verification and
diagnosis of the specification of security requirements in cyber-physical systems.
Computers in Industry 132 (2021), 1–14.

[87] S. Wang, B. Luo, W. Shi, and D. Tiwari. 2016. Application configuration selection
for energy-efficient execution on multicore systems. J. Parallel and Distrib.
Comput. 87 (2016), 43–54.

[88] W. Wang, S. Jian, Y. Tan, Q. Wu, and C. Huang. 2022. Representation learning-
based network intrusion detection system by capturing explicit and implicit
feature interactions. Computers & Security 112 (2022), 102537.

[89] S. J. Weamie. 2022. Cross-site scripting attacks and defensive techniques: A
comprehensive survey. International Journal of Communications, Network and
System Sciences 15, 8 (2022), 126–148.

[90] Y. Wei, X. Sun, L. Bo, S. Cao, X. Xia, and B. Li. 2021. A comprehensive study on
security bug characteristics. Journal of Software: Evolution and Process 33, 10
(2021), e2376.

[91] P. Wooderson and D. Ward. 2017. Cybersecurity testing and validation. Technical
Report. SAE Technical Paper.

[92] T. Xu and Y. Zhou. 2015. Systems approaches to tackling configuration errors: A
survey. Comput. Surveys 47, 4 (2015), 1–41.

[93] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasupathy. 2011.
An empirical study on configuration errors in commercial and open source
systems. In Symposium on Operating Systems Principles (SOSP). ACM, 159–172.

[94] J. Zhang, R. Piskac, E. Zhai, and T. Xu. 2021. Static detection of silent misconfig-
urations with deep interaction analysis. Proceedings of the ACM on Programming
Languages 5 (2021), 1–30.

[95] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu. 2021. An evolutionary
study of configuration design and implementation in cloud systems. International
Conference on Software Engineering (ICSE), 188–200.

[96] S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong. 2016. Confmapper: Au-
tomated variable finding for configuration items in source code. In 2016 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, 228–235.

39

	Abstract
	1 Introduction
	2 Background
	2.1 System Configuring
	2.2 Vulnerability Management

	3 Methodology
	3.1 Goal and Research Questions
	3.2 Questionnaire Design
	3.3 Conduct

	4 Results
	4.1 Demographics
	4.2 Main Causes, Prevalence, and Severity
	4.3 Experiences

	5 Discussion
	5.1 252 RQ1: Main Causes
	5.2 111 RQ2: Prevalence and Severity
	5.3 0 RQ3: Treatment and Prevention

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

